Recent results on the majorization theory of graph spectrum and topological index theory
نویسندگان
چکیده
Suppose π = (d1, d2, . . . , dn) and π = (d1, d ′ 2 , . . . , dn) are two positive nonincreasing degree sequences, write π ⊳ π if and only if π 6= π, ∑n i=1 di = ∑n i=1 d ′ i, and ∑j i=1 di ≤ ∑j i=1 di for all j = 1, 2, . . . , n. Let ρ(G) and μ(G) be the spectral radius and signless Laplacian spectral radius of G, respectively. Also let G and G be the extremal graphs with the maximal (signless Laplacian) spectral radii in the class of connected graphs with π and π as their degree sequences, respectively. If π ⊳ π can deduce that ρ(G) < ρ(G) (respectively, μ(G) < μ(G)), then it is said that the spectral radii (respectively, signless Laplacian spectral radii) of G and G satisfy the majorization theorem. This paper presents a survey to the recent results on the theory and application of the majorization theorem in graph spectrum and topological index theory.
منابع مشابه
Application of Graph Theory: Relationship of Topological Indices with the Partition Coefficient (logP) of the Monocarboxylic Acids
It is well known that the chemical behavior of a compound is dependent upon the structure of itsmolecules. Quantitative structure – activity relationship (QSAR) studies and quantitative structure –property relationship (QSPR) studies are active areas of chemical research that focus on the nature ofthis dependency. Topological indices are the numerical value associated with chemical constitution...
متن کاملA note on connectivity and lambda-modified Wiener index
In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.
متن کاملApplication of Graph Theory: Investigation of Relationship Between Boiling Temperatures of Olefins and Topological Indices
Abstract: In this study an appropriate computational approach was presented for estimating the boiling temperatures of 41 different types of olefins and their derivatives. Based on the guidelines of this approach, several structural indices related to the organic components were applied using graph theory. Meanwhile, in addition to evaluating the relation between the boiling temperatures of ole...
متن کاملApplication of Graph Theory to Some Thermodynamic Properties and Topological Indices
The relationship between the Randic , Wiener, Hosoya , Balaban, Schultz indices, Harary numbers andDistance matrix to enthalpies of formation (Airf), heat capacity, (Cp) , enthalpies of combustion (AH °c ),enthalpy of vaporization (AH °vap) and normal boiling points (bpK)of C2 C10 normal alkanes isrepresented
متن کاملRelationship between topological indices and thermodynamic properties and of the monocarboxylic acids applications in QSPR
Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. One of the useful indic...
متن کامل